Part Number Hot Search : 
4063AP1 78012 0300L DS2155G 2822M RF1304 CP103GN D934420
Product Description
Full Text Search
 

To Download IR2130D Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  symbol p arameter min. max. units v b1,2,3 high side floating supply absolute voltage -0.3 v s1,2,3 + 20 v s1,2,3 high side floating supply offset voltage v so - 5 v so + 400 v ho1,2,3 high side output voltage v s1,2,3 - 0.3 v s1,2,3 + 0.3 v cc low side fixed supply voltage -0.3 20 v so low side driver return -5 v cc + 0.3 v lo1,2,3 low side output voltage v so - 0.3 v cc + 0.3 v v in logic input voltage (hin, lin & sd) -0.3 v cc + 0.3 v flt fault output voltage -0.3 v cc + 0.3 v cao operational amplifier output voltage -0.3 v cc + 0.3 v ca - operational amplifier inverting input voltage -0.3 v cc + 0.3 dv s /dt allowable offset supply voltage transient (fig. 16) 50 v/ns p d package power dissipation @ ta< = 25c (fig. 19) 1.5 w r thja thermal resistance, junction to ambient 70 c/w t j junction temperature -55 125 t s storage temperatue -55 150 c t l lead temperature (soldering, 10 seconds) 300 weight 6.1 (typical) g features n hermetic n floatingchanneldesignedforbootstrap operation fully operational to +400v tolerant to negative transient voltage dv/dt immune n gate drive supply range from 10 to 20v n undervoltage lockout for all channels n over-current shutdown turns off all six drivers n independent half-bridge drivers n matched propagation delay for both channels n outputs in phase with inputs pd-60022b IR2130D 3-phase driver product summary v offset 400v max. i o +/- 200 ma / 420 ma v out 10 - 20v t on/off (typ.) 675 & 425 ns deadtime (typ.) 0.9 s absolute maximum ratings absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. all voltage param- eters are absolute voltages referenced to vso. the thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. description the IR2130D is a high voltage, high speed power mosfet and igbt driver with three independent high and low side referenced output channels. proprietary hvic technology enables ruggedized monolithic construction. logic inputs are compatible with 5v cmos or lsttl outputs. a ground- referenced operational amplifier provides analog feedback of bridge current via an external current sense resistor. a current trip function which terminates all six outputs is also derived from this resistor. 3/1/00 an open drain fault signal indicates if an over- current or undervoltage shutdown has occurred. the output driverhgre a high pulse current buffer stage designed for minimum driver cross-con duction. propagation delays are matched to simplify use at high frequencies. the floating channels can be used to drive n-channel power mosfets or igbts in the high side configuration which operate up to 400 volts. www.irf.com 1
IR2130D 2 www.irf.com 125c symbol parameter min. typ. max. min. max. units test conditions t on turn-on propagation delay 500 675 850 850 (all six channels) cl= 1000pf t r turn-on rise time (all six channels) 80 125 175 ns v s1,2,3 = 0 to 400 v t off turn-off propagation delay 300 425 550 600 v in = 0 & 5 v (all six channels) t f turn-off fall time (all six channels) 35 55 85 dt deadtime (ls turn-off to hs turn-on 0.4 0.9 1.3 0.25 1.5 s cl = 1000pf, & hs turn-off to ls turn-on) v in = 0 & 5v t itrip itrip to output shutdown prop. delay 400 660 920 1100 ns cl = 1000pf, t flt itrip to fault indication delay 335 590 845 1000 ns v in, v itrip = 0 & 5v t fltclr lin1, 2, 3 to fault clear time 5.5 10 12.5 s t flt,in input filter time (all six inputs) 310 ns v in = 0 & 5v t bl itrip blanking time 400 ns v itrip = 1v sr+ amplifier slew rate (+) 4.4 6.2 2.7 v/s sr- amplifier slew rate (-) 2.4 3.2 1.5 v/s symbol parameter min. max. units v b1,2,3 high side floating supply voltage v s1,2,3 + 10 v s1,2,3 + 20 v s1,2,3 high side floating supply offset voltage v so - 5 v so + 400 v ho1,2,3 high side output voltage v s1,2,3 v b1,2,3 v cc low side fixed supply voltage 10 20 v ss logic ground -5 5 v lo1,2,3 low side output voltage 0 v cc v in logic input voltage (hin, lin & sd) v ss v ss + 5 v flt fault output voltage v ss v cc v cao operational amplifier output voltage v ss 5 v ca- operational amplifier inverting input voltage v ss 5 recommended operating conditions the input/output logic timing diagram is shown in figure 1. for proper operation the device should be used within the recommended conditions. all voltage parameters are absolute voltages referenced to v s0 . the v s offset rating is tested with all supplies biased at 15v differential. v dynamic electrical characteristics v bias (v cc , v bs1,2,3 ) = 15v, v s0,1,2,3 = v ss , c l = 1000 pf unless otherwise specified. typical connection tj = 25c tj = -55 to 4
IR2130D www.irf.com 3 static electrical characteristics v bias (v cc , v bs1, 2, 3 ) = 15v, v so1, 2, 3 = v ss unless otherwise specified. the v in , v th and i in parameters are referenced to v ss and are applicable to all six logic input leads: hin1, 2, 3 & lin1, 2, 3. the v o and i o parameters are referenced to v so1, 2, 3. tj = 25c tj=55-125c symbol parameter min. typ. max. min. max. units test conditions i lk offset supply leakage currents 50 500 v b = v s= 400v i qbs quiescent v bs supply current 15 30 45 v in = 0v or 5v i qcc quiescent v cc supply current 3.0 4.0 6.0 ma v in = 0v or 5v i in + logic 1 input bias current(out= hi) 450 650 1050 v in = 0v i in - logic 0 input bias current(out=lo) 225 400 a v in = 5v i itrip + high itrip bias current 75 150 itrip = 5v i itrip - low itrip bias current 100 170 na itrip =0v v in , ih logic 0 input voltage( out = lo ) 2.2 v in , il logic 1 input voltage ( out = hi ) 0.8 v it,th + itrip input positive going threshold 400 490 580 350 580 mv v os amplifier input offset voltage 30 mv v so = ca- = 0.2v r on,flt fault- low on resistance 55 75 150 w i ca - ca- input bias current 0.5 4.0 4.0 na ca- = 2.5v v ccuv + v cc supply undervoltage positive 8.3 9.0 10.6 8.0 10.7 going threshold v ccuv - v cc supply undervoltage negative 8.0 8.7 10.5 7.7 10.5 going threshold v bsuv + v bs supply undervoltage positive 7.5 8.4 9.2 going threshold v bsuv - v bs supply undervoltage negative 7.1 8.0 8.8 going threshold i o + output high short circuit pulsed 200 250 v out = v in- = 0v current pw <= 10s i o - output low short circuit pulsed 420 500 ma v out =15, v in- =5v current pw <= 10s v oh,amp amplifier high level output voltage 5.0 5.2 5.4 4.9 5.6 v ca- = 0v, vso =1v v ol,amp amplifier low level output voltage 2.5 20 20 mv ca- = 1v, vso =0v i src,amp amplifier output source current 2.3 4.0 1.5 ca- = 0v, vso =1v, cao=4v i snk,amp amplifier output sink current 1.0 2.1 0.5 ca- = 1v, vso =0v,cao=2v cmrr amplifier common mode rejection 60 80 ca- =v so =0.1v & 5v ratio psrr amplifier power supply rejection 55 75 db ca- = v so =0.2v ratio vcc = 10v & 20v v oh high level output voltage 100 100 v in- = 0v, io = 0a v ol low level output voltage 100 100 v in- = 5v, io = 0a v v v ma mv a
IR2130D 4 www.irf.com static electrical characteristics continued v bias (v cc , v bs1, 2, 3 ) = 15v, v so1, 2, 3 = v ss unless otherwise specified. the v in , v th and i in parameters are referenced to v ss and are applicable to all six logic input leads: hin1, 2, 3 & lin1, 2, 3. the v o and i o parameters are referenced to v so1, 2, 3. tj = 25c tj = 55 to 125c symbol parameter min. typ. max. min. max. units test conditions i o+,amp amplifier output high short circuit 4.5 6.5 8.0 ca- = 0v, v so = 5v circuit v cao = 0v i o-,amp amplifier output high short circuit 3.2 5.2 7.0 ca- = 5v, v so = 0v circuit v cao = 5v
IR2130D www.irf.com 5 figure 3. deadtime waveform definitions figure 4. input/output switching time waveform definitions figure 1. input/output timing diagram figure 2. floating supply voltage transient test circuit figure 5. overcurrent shutdown switching time waveform definitions figure 6. diagnostic feedback operational amplifier circuit 4 lo1,2,3 ho1,2,3 itrip fault lin1,2,3 hin1,2,3 dt dt t r t on t off t f 50% 50% 90% 90% 10% 10% 50% 50% 50% 50% hin1,2,3 lin1,2,3 ho1,2,3 lo1,2,3 hin1,2,3 lin1,2,3 lo1,2,3 ho1,2,3 cao v s0 ca- v ss v cc v ss + - 50% 50% 50% 50% 50% t flt t itrip t fltclr fault lin1,2,3 itrip lo1,2,3
IR2130D 6 www.irf.com figure 11b. turn-on time vs. voltage figure 11a. turn-on time vs. temperature 0.00 0.30 0.60 0.90 1.20 1.50 -50 -25 0 25 50 75 100 125 temperature (c) turn-on delay time (s) typ. min. max. 0.00 0.30 0.60 0.90 1.20 1.50 10 12 14 16 18 20 v bias supply voltage (v) turn-on delay time (s) max. typ. min. figure 7. operational amplifier slew rate measurement figure 8. operational amplifier input offset voltage measurement cao + v s0 v cc v ss 0.2v 1k 20k ca- 15v + - v cao 21 - 0.2v v os = cao v s0 ca- v ss v cc 15v 50 pf + - 0v 3v 90% 10% 0v 3v d t1 d t2 d v d v d t1 sr+ = d v d t2 sr- = measure v cao1 at v s0 = 0.1v v cao2 at v s0 = 5v cmrr = -20 * log measure v cao1 at v cc = 10v v cao2 at v cc = 20v psrr = -20 * log v cao1 - v cao2 figure 9. operational amplifier common mode rejection ratio measurements figure 10. operational amplifier power supply rejection ratio measurements cao v s0 ca- v ss v cc 15v - + cao + v s0 v cc v ss 1k 20k ca- + - 0.2v (10v) (21) (v cao1 -0.1v) - (v cao2 -5v) 4.9v (db)
IR2130D www.irf.com 7 figure 14a. turn-off fall time vs. temperature figure 14b. turn-off fall time vs. voltage figure 12a. turn-off time vs. temperature figure 12b. turn-off time vs. voltage figure 13a. turn-on rise time vs. temperature figure 13b. turn-on rise time vs. voltage 0.00 0.20 0.40 0.60 0.80 1.00 -50 -25 0 25 50 75 100 125 temperature (c) turn-off delay time (s) typ. min. max. 0.00 0.20 0.40 0.60 0.80 1.00 10 12 14 16 18 20 v bias supply voltage (v) turn-off delay time (s) max. typ. min. 0 50 100 150 200 250 -50 -25 0 25 50 75 100 125 temperature (c) turn-on rise time (ns) typ. max. 0 50 100 150 200 250 10 12 14 16 18 20 v bias supply voltage (v) turn-on rise time (ns) max. typ. 0 25 50 75 100 125 -50 -25 0 25 50 75 100 125 temperature (c) turn-off fall time (ns) typ. max. 0 25 50 75 100 125 10 12 14 16 18 20 v bias supply voltage (v) turn-off fall time (ns) max. typ.
IR2130D 8 www.irf.com figure 16a. itrip to fault indication time vs. temperature figure 16b. itrip to fault indication time vs. voltage figure 15b. itrip to output shutdown time vs. voltage figure 15a. itrip to output shutdown time vs. tempera- ture figure 17a. lin1,2,3 to fault clear time vs. temperature figure 17b. lin1,2,3 to fault clear time vs. voltage 0.00 0.30 0.60 0.90 1.20 1.50 -50 -25 0 25 50 75 100 125 temperature (c) itrip to output shutdown delay time (s) typ. min. max. 0.00 0.30 0.60 0.90 1.20 1.50 10 12 14 16 18 20 v bias supply voltage (v) itrip to output shutdown delay time (s) max. typ. min. 0.0 5.0 10.0 15.0 20.0 25.0 -50 -25 0 25 50 75 100 125 temperature (c) lin1,2,3 to fault clear time (s) typ. min. max. 0.00 0.30 0.60 0.90 1.20 1.50 10 12 14 16 18 20 v cc supply voltage (v) itrip to fault indication delay time (s) max. typ. min. 0.00 0.30 0.60 0.90 1.20 1.50 -50 -25 0 25 50 75 100 125 temperature (c) itrip to fault indication delay time (s) typ. min. max. 0.0 5.0 10.0 15.0 20.0 25.0 10 12 14 16 18 20 v cc supply voltage (v) lin1,2,3 to fault clear time (s) max. typ. min.
IR2130D www.irf.com 9 figure 19a. amplifier slew rate (+) vs. temperature figure 19b. amplifier slew rate (+) vs. voltage figure 18a. deadtime vs. temperature figure 18b. deadtime vs. voltage figure 20a. amplifier slew rate (-) vs. temperature figure 20b. amplifier slew rate (-) vs. voltage 0.00 1.50 3.00 4.50 6.00 7.50 -50 -25 0 25 50 75 100 125 temperature (c) deadtime (s) typ. min. max. 0.00 1.50 3.00 4.50 6.00 7.50 10 12 14 16 18 20 v bias supply voltage (v) deadtime (s) max. typ. min. 0.0 2.0 4.0 6.0 8.0 10.0 -50 -25 0 25 50 75 100 125 temperature (c) amplifier slew rate + (v/s) typ. min. 0.0 2.0 4.0 6.0 8.0 10.0 10 12 14 16 18 20 v cc supply voltage (v) amplifier slew rate + (v/s) min. typ. 0.00 1.00 2.00 3.00 4.00 5.00 -50 -25 0 25 50 75 100 125 temperature (c) amplifier slew rate - (v/s) typ. min. 0.00 1.00 2.00 3.00 4.00 5.00 10 12 14 16 18 20 v cc supply voltage (v) amplifier slew rate - (v/s) min. typ.
IR2130D 10 www.irf.com figure 22a. logic 1 input threshold vs. temperature figure 22b. logic 1 input threshold vs. voltage figure 21a. logic 0 input threshold vs. temperature figure 20b. logic 0 input threshold vs. voltage figure 23a. itrip input positive going threshold vs. temperature figure 23b. itrip input positive going threshold vs. voltage 0 150 300 450 600 750 -50 -25 0 25 50 75 100 125 temperature (c) itrip input positive going threshold (mv) typ. min. max. 0 150 300 450 600 750 10 12 14 16 18 20 v cc supply voltage (v) itrip input positive going threshold (mv) max. typ. min. 0.00 1.00 2.00 3.00 4.00 5.00 -50 -25 0 25 50 75 100 125 temperature (c) logic "0" input threshold (v) min. 0.00 1.00 2.00 3.00 4.00 5.00 10 12 14 16 18 20 v cc supply voltage (v) logic "0" input threshold (v) min. 0.00 1.00 2.00 3.00 4.00 5.00 -50 -25 0 25 50 75 100 125 temperature (c) logic "1" input threshold (v) max. 0.00 1.00 2.00 3.00 4.00 5.00 10 12 14 16 18 20 v cc supply voltage (v) logic "1" input threshold (v) max.
IR2130D www.irf.com 11 figure 25a. low level output vs. temperature figure 25b. low level output vs. voltage figure 24a. high level output vs. temperature figure 24b. high level output vs. voltage figure 26a. offset supply leakage current vs. temperature figure 26b. offset supply leakage current vs. voltage 0.00 0.20 0.40 0.60 0.80 1.00 -50 -25 0 25 50 75 100 125 temperature (c) high level output voltage (v) max. 0.00 0.20 0.40 0.60 0.80 1.00 -50 -25 0 25 50 75 100 125 temperature (c) low level output voltage (v) max. 0.00 0.20 0.40 0.60 0.80 1.00 10 12 14 16 18 20 v bias supply voltage (v) high level output voltage (v) max. 0.00 0.20 0.40 0.60 0.80 1.00 10 12 14 16 18 20 v bias supply voltage (v) low level output voltage (v) max. 0 100 200 300 400 500 0 100 200 300 400 500 600 v b boost voltage (v) offset supply leakage current (a) max. 0 100 200 300 400 500 -50 -25 0 25 50 75 100 125 temperature (c) offset supply leakage current (a) max.
IR2130D 12 www.irf.com figure 28a. v cc supply current vs. t emperature figure 28b. v cc supply current vs. voltage figure 27a. v bs supply current vs. temperature figure 27b. v bs supply current vs. voltage figure 29a. logic 1 input current vs. temperature figure 29a. logic 1 input current vs. voltage 0 20 40 60 80 100 -50 -25 0 25 50 75 100 125 temperature (c) v bs supply current (a) typ. max. 0 20 40 60 80 100 10 12 14 16 18 20 v bs floating supply voltage (v) v bs supply current (a) max. typ. 0.0 2.0 4.0 6.0 8.0 10.0 -50 -25 0 25 50 75 100 125 temperature (c) v cc supply current (ma) typ. max. 0.0 2.0 4.0 6.0 8.0 10.0 10 12 14 16 18 20 v cc supply voltage (v) v cc supply current (ma) max. typ. 0.00 0.25 0.50 0.75 1.00 1.25 -50 -25 0 25 50 75 100 125 temperature (c) logic "1" input bias current (ma) typ. max. 0.00 0.25 0.50 0.75 1.00 1.25 10 12 14 16 18 20 v cc supply voltage (v) logic "1" input bias current (ma) max. typ.
IR2130D www.irf.com 13 figure 31a. high itrip current vs. temperature figure 31b. high itrip current vs. voltage figure 30a. logic 0 input current vs. temperature figure 30b. logic 0 input current vs. voltage figure 32a. low itrip current vs. temperature figure 32b. low itrip current vs. voltage 0 100 200 300 400 500 10 12 14 16 18 20 v cc supply voltage (v) "high" itrip bias current (a) max. typ. 0.00 0.25 0.50 0.75 1.00 1.25 -50 -25 0 25 50 75 100 125 temperature (c) logic "0" input bias current (ma) typ. max. 0.00 0.25 0.50 0.75 1.00 1.25 10 12 14 16 18 20 v cc supply voltage (v) logic "0" input bias current (ma) max. typ. 0 50 100 150 200 250 -50 -25 0 25 50 75 100 125 temperature (c) "low" itrip bias current (na) max. 0 100 200 300 400 500 10 12 14 16 18 20 v cc supply voltage (v) "low" itrip bias current (a) max. 0 100 200 300 400 500 -50 -25 0 25 50 75 100 125 temperature (c) "high" itrip bias current (a) typ. max.
IR2130D 14 www.irf.com figure 35. v cc undervoltage (+) vs. temperature figure 36. v cc undervoltage (-) vs. temperature figure 33. v bs undervoltage (+) vs. temperature figure 34. v bs undervoltage (-) vs. temperature figure 37a. fault low on resistance vs. temperature figure 37b. fault low on resistance vs. voltage 6.0 7.0 8.0 9.0 10.0 11.0 -50 -25 0 25 50 75 100 125 temperature (c) v bs undervoltage lockout + (v) typ. min. max. 6.0 7.0 8.0 9.0 10.0 11.0 -50 -25 0 25 50 75 100 125 temperature (c) v bs undervoltage lockout - (v) typ. min. max. 6.0 7.0 8.0 9.0 10.0 11.0 -50 -25 0 25 50 75 100 125 temperature (c) v cc undervoltage lockout + (v) typ. min. max. 6.0 7.0 8.0 9.0 10.0 11.0 -50 -25 0 25 50 75 100 125 temperature (c) v cc undervoltage lockout - (v) typ. min. max. 0 50 100 150 200 250 -50 -25 0 25 50 75 100 125 temperature (c) fault- low on resistance (ohms) typ. max. 0 50 100 150 200 250 10 12 14 16 18 20 v cc supply voltage (v) fault- low on resistance (ohms) max. typ.
IR2130D www.irf.com 15 figure 39a. output sink current vs. temperature figure 39b. output sink current vs. voltage figure 38a. output source current vs. temperature figure 38b. output source current vs. voltage figure 40a. amplifier input offset vs. temperature figure 40b. amplifier input offset vs. voltage 0 150 300 450 600 750 -50 -25 0 25 50 75 100 125 temperature (c) output sink current (ma) min. typ. 0 125 250 375 500 625 750 10 12 14 16 18 20 v bias supply voltage (v) output sink current (ma) min. typ. 0 100 200 300 400 500 -50 -25 0 25 50 75 100 125 temperature (c) output source current (ma) min. typ. 0 100 200 300 400 500 10 12 14 16 18 20 v bias supply voltage (v) output source current (ma) min. typ. 0 10 20 30 40 50 10 12 14 16 18 20 v cc supply voltage (v) amplifier input offset voltage (mv) max. 0 10 20 30 40 50 -50 -25 0 25 50 75 100 125 temperature (c) amplifier input offset voltage (mv) max.
IR2130D 16 www.irf.com figure 42a. amplifier cmrr vs. temperature figure 42b. amplifier cmrr vs. voltage figure 41a. ca- input current vs. temperature figure 41b. ca- input current vs. voltage figure 43a. amplifier psrr vs. temperature figure 43b. amplifier psrr vs. voltage 0.0 2.0 4.0 6.0 8.0 10.0 -50 -25 0 25 50 75 100 125 temperature (c) ca- input bias current (na) max. 0.0 2.0 4.0 6.0 8.0 10.0 10 12 14 16 18 20 v cc supply voltage (v) ca- input bias current (na) max. 0 20 40 60 80 100 -50 -25 0 25 50 75 100 125 temperature (c) amplifier cmrr (db) typ. min. 0 20 40 60 80 100 10 12 14 16 18 20 v cc supply voltage (v) amplifier cmrr (db) min. typ. 0 20 40 60 80 100 -50 -25 0 25 50 75 100 125 temperature (c) amplifier psrr (db) typ. min. 0 20 40 60 80 100 10 12 14 16 18 20 v cc supply voltage (v) amplifier psrr (db) min. typ.
IR2130D www.irf.com 17 figure 45a. amplifier low level output vs. temperature figure 45b. amplifier low level output vs. voltage figure 44a. amplifier high level output vs. temperature figure 44b. amplifier high level output vs. voltage figure 46a. amplifier output source current vs. tempera- ture figure 46b. amplifier output source current vs. voltage 4.50 4.80 5.10 5.40 5.70 6.00 -50 -25 0 25 50 75 100 125 temperature (c) amplifier high level output voltage (v) typ. min. max. 4.50 4.80 5.10 5.40 5.70 6.00 10 12 14 16 18 20 v cc supply voltage (v) amplifier high level output voltage (v) max. typ. min. 0 20 40 60 80 100 -50 -25 0 25 50 75 100 125 temperature (c) amplifier low level output voltage (mv) max. 0 20 40 60 80 100 10 12 14 16 18 20 v cc supply voltage (v) amplifier low level output voltage (mv) max. 0.0 2.0 4.0 6.0 8.0 10.0 10 12 14 16 18 20 v cc supply voltage (v) amplifier output source current (ma) typ. min. 0.0 2.0 4.0 6.0 8.0 10.0 -50 -25 0 25 50 75 100 125 temperature (c) amplifier output source current (ma) typ. min.
IR2130D 18 www.irf.com figure 48a. amplifier output high short circuit current vs. temperature figure 48b. amplifier output high short circuit current vs. voltage figure 47a. amplifier output sink current vs. temperature figure 47b. amplifier output sink current vs. voltage figure 49a. amplifier output low short circuit current vs. temperature figure 49b. amplifier output low short circuit current vs. voltage 0.0 3.0 6.0 9.0 12.0 15.0 -50 -25 0 25 50 75 100 125 temperature (c) output high short circuit current (ma) typ. max. 0.0 3.0 6.0 9.0 12.0 15.0 10 12 14 16 18 20 v cc supply voltage (v) output low short circuit current (ma) max. typ. 0.0 3.0 6.0 9.0 12.0 15.0 10 12 14 16 18 20 v cc supply voltage (v) output high short circuit current (ma) max. typ. 0.00 1.00 2.00 3.00 4.00 5.00 -50 -25 0 25 50 75 100 125 temperature (c) amplifier output sink current (ma) typ. min. 0.0 3.0 6.0 9.0 12.0 15.0 -50 -25 0 25 50 75 100 125 temperature (c) output low short circuit current (ma) typ. max. 0.00 1.00 2.00 3.00 4.00 5.00 10 12 14 16 18 20 v cc supply voltage (v) amplifier output sink current (ma) typ. min.
IR2130D www.irf.com 19 figure 52. ir2130 t j vs. frequency (irf840) r gate = 15w, v cc = 15v figure 53. ir2130 t j vs. frequency (irf450) r gate = 10w, v cc = 15v figure 50. ir2130 t j vs. frequency (irf820) r gate = 33w, v cc = 15v figure 51. ir2130 t j vs. frequency (irf830) r gate = 20w, v cc = 15v figure 54. maximum vs negative offset vs. v bs supply voltage 20 25 30 35 40 45 50 1e+2 1e+3 1e+4 1e+5 frequency (hz) junction temperature (c) 320v 160v 0v 480v 20 40 60 80 100 1e+2 1e+3 1e+4 1e+5 frequency (hz) junction temperature (c) 320v 160v 0v 480v 20 25 30 35 40 45 50 1e+2 1e+3 1e+4 1e+5 frequency (hz) junction temperature (c) 320v 160v 0v 480v 20 40 60 80 100 120 140 1e+2 1e+3 1e+4 1e+5 frequency (hz) junction temperature (c) 320v 160v 0v 480v -15.0 -12.0 -9.0 -6.0 -3.0 0.0 10 12 14 16 18 20 v bs floating supply voltage (v) v s offset supply voltage (v) typ.
IR2130D 20 www.irf.com lead symbol description logic inputs for high side gate driver outputs (ho1,2,3), out of phase logic inputs for low side gate driver output (lo1,2,3), out of phase indicates over-current or undervoltage lockout (low side) has occurred, negative logic v cc low side and logic fixed supply itrip input for over-current shutdown cao output of current amplifier ca- negative input of current amplifier v ss logic ground v b1,2,3 high side floating supplies ho1,2,3 high side gate drive outputs v s1,2,3 high side floating supply returns lo1,2,3 low side gate drive outputs v s0 low side return and positive input of current amplifier functional block diagram lead definitions lin1,2,3 hin1,2,3 fault
IR2130D www.irf.com 21 case outline and dimensions - mo038ab lead assignment ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 ir european regional center: 439/445 godstone rd, whyteleafe, surrey cr3 obl, uk tel: ++ 44 (0)20 8645 8000 ir canada: 15 lincoln court, brampton, ontario l6t3z2, tel: (905) 453 2200 ir germany: saalburgstrasse 157, 61350 bad homburg tel: ++ 49 (0) 6172 96590 ir italy: via liguria 49, 10071 borgaro, torino tel: ++ 39 011 451 0111 ir japan: k&h bldg., 2f, 30-4 nishi-ikebukuro 3-chome, toshima-ku, tokyo 171 tel: 81 (0)3 3983 0086 ir southeast asia: 1 kim seng promenade, great world city west tower, 13-11, singapore 237994 tel: ++ 65 (0)838 4630 ir taiwan: 16 fl. suite d. 207, sec. 2, tun haw south road, taipei, 10673 tel: 886-(0)2 2377 9936 data and specifications subject to change without notice. 3/00


▲Up To Search▲   

 
Price & Availability of IR2130D

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X